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OPTIMIZATION IN OPERATIONS RESEARCH:   SOME EXAMPLES 

by 

George B. Dantzig 

Mathematical methods are penetrating into everyday decision processes. 

Historically, planning has always been carried out using what some call 

"mature Judgment". The human mind has a remarkable faculty for trying 

to consider many possible alternatives. The electronic computer with 

its equally remarkable speed, appears to be a natural tool for exploring 

alternative courses of action. It takes little imagination to see how 

computers can be programmed in the finest minutia to represent, say, the 

quantities of inventory on hand and the movement of in-process inventory 

from machine to machine in a Job-shop. This obvious approach, called 

simulation, has popular appeal. Every manager, aware that he must keep 

up with the times, can easily imagine a computer sifting through the 

possible alternative combinations and selecting one that is best according 

to some criterion. In fact, the less such a person knows about mathematics, 

the more this simulation approach has appeal. 

However, a raw search often can be combinatorially prohibitive. 

Consider, for example, a problem represented by a linear program. Math- 

ematically, the set of possible feasible programs is represented by the 

intersection of a number of half-spaces whose boundaries are hyperplanes. 

The optimal solution consists in finding that vertex which is the 

greatest distance from a given objectLve-hyper-plane fthe  dotted one in 

Figure l). The set of "feasible" solutions, (the shaded area) can be 

represented, of course, by linear combinations of vertices or extreme point 
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FIGURE 1 

Problem 1;  In the Simplex Method the number of vertex steps in practice 

is of the order of magnitude of M [the excess of the number of hyper- 

planes over the dimension]. Determine a sharp upper bound for the minimum 

number of steps. 
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solution. Now, it is a relatively easy matter to program a computer 

to pass from one extreme point to the next. One approach therefore, 

is to investigate all the extreme points and pick out the best. Unfor- 

tunately, some simple convex polytopes like an n-cube have a prohibitive 

number of vertices (the n-cube has 2n vertices) and this simple naive 

vertex-search approach is doomed to failure. Surprisingly enough, 

a minor variation of it has worked out quite well. 

This method moves from one vertex to the next, moving along that 

edge which gives the greatest decrease in the objective function per 

unit change of the variable being introduced into the solution. This 

minor change, introducing a steepest descent, would not appear to be 

sufficient to prevent endless wandering over the edges of the polytope. 

Yet all over the world this procedure, called the Simplex Method, is 

a work-horse that daily solves thousands of problems. This brings us 

to the first of several famous problems of mathematical programming, which 

is stated below Figure 1. In practice, the number of steps is often of 

the magnitude of the excess m of the number of hyper-planes over the 

dimension of the space k . The open question is why? 

The study of the properties of convex polytopes forms an important 

part of linear programing research. It is hoped that insight may be 

presided on why the simplex method is as efficient as it is and how it 

might be improved. A second unsolved problem, closely related to this 

one is the famous "m-step" or "Hirsch Conjecture" (see Figure 2). 

Mathematics as we know it today is an eerie edifice of abstraction 

that has its roots in problems of the real world. But these problems, 

aside from puzA.es and number lore, find their origins in the world of 
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FIGURE 2 

Problem 2;  Given a convex polytope in M dimensional space with 

2M faces, M faces intersecting at 0 , the other M faces intersecting 

at P : 

Prove (or Disprove);  There exists a chain of M edges connecting 

0 T C P . 

-U- 

i 



physics. The every day real world of planning and decisions attracted 

slight interest among mathematicians until about 19^7. The reasons 

for this are obscure. In 1936 Motzkin, in his thesis, counted, after 

exhaustive search, some 30-odd papers on linear inequalities. [Compare 

this with the number that were published in a single month at that time 

on linear equations and the closely related matrix theory!] Those papers 

that were published were isolated one from the other. It is strange that 

there was so little interest, for it is easy to set up mathematical models 

of decision problems in the form of linear inequalities. Perhaps it 

might be argued that the reason such problems were never studied was 

the difficulty of solution without electronic computers. But why then 

were equation systems studied when even a 20x20 system was also out 

of the reach of available computers? I do not know the answer to the 

question as to why inequality theory was not investigated more intensively. 

Today we know that study of inequality constrained systems is an inter- 

esting and exciting field, full of challenges, like any other field of 

mathematics. 

Part of the motivational drive comes from the desire by industry 

to solve bigger and bigger systems. In refinery operations, an initial 

simple blending model, will in time be expanded until it includes the 

distillation and reforming units, the selection of crude oils, oil field 

production, and the distribution and storage of the multi-product output. 

Industries which make numerous products in a number of alternative 

plants and ship to many destinations, give rise to very large scale mat.b- 

ematical models. One such system has over 30,000 equations and over 10 

non-negative variables 1 In spite of their size, this and other such 

problems have been successfully solved. The technique used is called 
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the decomposition principle. It is a special application of the Lagrange 

Multiplier approach which permits the breaking up of the original problem 

into a sequence of smaller linear programs. 

Lagrange, as you may recall, made many contributions to mathematics 

from number theory to analysis. It is said that when the post held by 

Euber was vacated, Frederich the Great invited Lagrange with the words: 

"from the greatest king in Europe to the greatest mathematician in Europe." 

Lagrange, by contrast, was a modest man. 

The general approach is best illustrated by considering a very broad 

class of non-linear inequality constrained extreme problems. We begin 

by first considering classic equality constrained problem. 

Find x such that 

f (x) = min 

f^x) = 0 

s \3C, , . . • »xn/ 

f (x) = 0 
m 

We form the Lagrangian: 

0(x) = fn(x) + XfAx) +...+ X f (x) 0 i 1 mm 

Theorem;     If   x = £    yields    0(i) = min 0(x)    and if (by good luck) 

f.(ü) = 0    then    x    solves the original problem. 

For inequality constrained problems we have an analogous statement. 

We make the obvious change and,  in addition require 

X.f.U)  =0     ,    X.   > 0  . 1  i '       i - 

Lagrange's great contribution was to make "the good luck" happen by 

treating the constants as unknowns and choosing their values by back sub- 

stitution so as to satisfy the restrictions. However, in certain appiica- 
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tions, like linear programming, the Lagrange approach degenerates in an 

embarassing manner that does not make it a practical approach. The basic 

theorem for inequalities constraints is due to Fritz John. Assuming f.(x) 

are continuous and differentiable in the neighborhood of an extremal so- 

lution, he showed that the required multipliers exist if a multiplier XQ 

for the fn(x) function is included also. Kuhn-Tucker, assuming conditions 

that rule out such things as cusps, proved that a set of multipliers ex- 

ist with X0 • 1 , 

We shall make a trivial extension of the Lagrangian approach that 

will have important implications for applications. 

First Idea: Use a Partial Set of Lagrange Multipliers 

Min f0(x) 

f-jU) < 0       :    \l 

fAx)  < 0       :    X2 

-partition 

f3(x) i 0 

f. (x) < 0 sub-problem 

0(x) = f0(x) + X1fi(x) + X2f2(x) 

Theorem: If x = Ä yields Min 0(x) subject to f3(x) < 0 , f, (x) < 0 

and if (by good luck) f U) _< 0 , f U) < 0 , then St solves the original 

problem. 

Lagrange's idea was to make the "good luck" happen 

treat X. unknown constants 
i 

find St  = X(X . tX ) 

choose X^Xp so that f-^iSt)  < 0 , fpiSt)  < 0 

For inequality systems, it is usually difficult to treat St  analytically as 
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a function of X . To get around this difficulty, we try an alternate ap- 

proach. 

Second Idea; Start with a guess. For A, say X = A0, examine 

x = X , the solution to the sub-problem. Use it to obtain a better guess 

for X * X ; iterate. 

Example;  Find x _> 0 , Min f0(x) : 

clxl + C2X2 + C3X3 + ^XU + C5X5    s fo(x) 

Guess      X^: a11x1 ♦ a12x2 * a13x3 + allA 
+ a15x5 lb2 

a2lXl + a22x2 i"? 

a3lxl + a32x2 

aU3x3 + &hkxk 

ib3 

1\ 

Sub- 
Problem 

a53X3 + a5Uxli ib5 

+ a65x5 '-h 
01(x1,x2)    +  02(x3,xu) + 03(x5)= 0(x) 

Subproblem;  Decomposes into 3 separate minimization problems. Hence 

the term: "Decomposition Principle". 

The decomposition algorithm may be described by a chicken-and- 

egg process. The "egg" part begins with an estimated value for 

k k 
X = X* and  Xp =* X . This defines a Lagrangian problem with partial 

constraints. We assume we have some way to solve this and that x = x" 

Now x* is used to initiate the "cnicken" part by forming the vector 

[f (xk) , fAir)   , f (x ) , l] . Earlier generations of chickens and 

eggs have already produced the other columns shown below in the "Master 

Linear Program". A convex combination of these columns is sought such 
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that their weighted average, component by component, is non-positive and 

the first component is minimal. This is a linear program. The Lagrange 

Multipliers associated with this program are called dual variables. 

Their optimal values, denoted by (l, X , X2,A ) = (l,xJ+1,x|+1,A  ), 

is now used to initiate the next Lagrangian problem. 

Master Linear Program;  Find Min z and w. > 0 ; optimal dual variables 

0 

wk i 0 

0 

= [1] 

The proof that the iterative process converges assumes that the 

functions f.(x) are convex. Applied to the earlier referenced large 

scale problem, the Master Program involved about 300 equations. The re- 

mainder, treated as one subproblem, had 30,000 mutually exclusive equations 

and therefore would break up into 30,000 independent problems. Applied 

to calculus of variations type problems, such as the optimal linear 

control processes considered by Pontrayagin, Bellman, Zadeh and others, 

this approach can lead to a constructive solution technique. 

Generally speaking, Lagrange Multipliers are treated in the 

literature as just a device. Courant describes it as an "elegant device" 

for getting around eliminating dependent variables and then solving a 

simple minimization problem without restrictions. Recent research, however, 

reveals that it has a deeper meaning. 
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